Bir fonksiyonu ve türevi olan fonksiyonu tanımlayalım.
fonksiyonunun tanımını bulmak istediğimizde türevi olan ve birbirinden bir sabit terim ile ayrılan sonsuz sayıda fonksiyonu yazabileceğimizi görebiliriz.
Tüm bu fonksiyonlarını, fonksiyonun sonuna ekleyeceğimiz sabit bir reel sayısı ile tek bir fonksiyon tanımı altında toplayabiliriz.
olmak üzere,
Türevi fonksiyonu olan bu fonksiyonuna fonksiyonunun ters türevi ya da belirsiz integrali denir.
ise,
sayısına integral sabiti denir.
Önceki bölümde tanımladığımız belirli integral ile belirsiz integral arasındaki bazı farklar şunlardır:
Belirli integralde integral işaretinin altında ve üstünde işlem aralığının alt ve üst sınırları belirtilir, belirsiz integralde ise belirtilmez.
Belirli integralin sonucu bir değerdir, belirsiz integral ise bir fonksiyondur.
Belirsiz integralin sonucu integral sabiti içerir, belirli integralde ise alt ve üst sınırlar için hesaplanan integral değerleri birbirinden çıkarıldığı için integral sabitleri birbirini götürür.
Belirsiz İntegralin Özellikleri
Belirli integralin özelliklerinde bahsettiğimiz aşağıdaki işlem özellikleri belirsiz integral için de geçerlidir.
olmak üzere,
Türevde geçerli olmadığı gibi, integralde de benzer özellikler çarpma ve bölme işlemleri için geçerli değildir.